Plasmon-controlled fluorescence: A new detection technology.
نویسندگان
چکیده
Fluorescence is widely used in biological research. Future advances in biology and medicine often depend on the advances in the capabilities of fluorescence measurements. In this overview paper we describe how a combination of fluorescence, and plasmonics, and nanofabrication can fundamentally change and increase the capabilities of fluorescence technology. This change will be based on the use of surface plasmons which are collective oscillations of free electrons in metallic surfaces and particles. Surface plasmon resonance is now used to measure bioaffinity reactions. However, the uses of surface plasmons in biology are not limited to their optical absorption or extinction. We have shown that fluorophores in the excited state can create plasmons which radiate into the far field; additionally fluorophores in the ground state can interact with and be excited by surface plasmons. These interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location and direction of fluorophore emission. We refer to this technology as plasmon-controlled fluorescence. We predict that plasmon-controlled fluorescence (PCF) will result in a new generation of probes and devices. PCF is likely to allow design of structures which enhance emission at specific wavelengths and the creation of new devices which control and transport the energy from excited fluorophores in the form of plasmons, and then convert the plasmons back to light.
منابع مشابه
Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)
Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...
متن کاملThe efficiency of surface-plasmon coupled emission for sensitive fluorescence detection.
Surface-plasmon coupled emission (SPCE) has emerged as a new and potentially powerful tool for highly sensitive fluorescence detection. In the case of SPCE, the fluorescence is collected through a semi-transparent thin metal film deposited on glass. We present a theoretical analysis of SPCE, studying the potential enhancement of the fluorescence collection efficiency, brightness, quantum-yield,...
متن کاملImprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots.
We designed and fabricated two new nanostructured biosensing chips, with which the sensitive detection of prostate specific antigen (PSA) as low as 100 pg ml(-1) can be achieved, by measuring the plasmon enhanced fluorescence through a conventional dark field microscope. The gold nanostructure arrays, one with gold nanopillars of 140 nm, the other with gold nanoholes of 140 nm, were fabricated ...
متن کاملLong-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7.
A new biosensor platform for the detection of bacterial pathogens based on long-range surface plasmon-enhanced fluorescence spectroscopy (LRSP-FS) is presented. The resonant excitation of LRSP modes provides an enhanced intensity of the electromagnetic field, which is directly translated to an increased strength of fluorescence signal measured upon the capture of target analyte at the sensor su...
متن کاملPlasmonic technology: novel approach to ultrasensitive immunoassays.
At the Center for Fluorescence Spectroscopy, we have taken advantage of the favorable properties of surface plasmon-coupled emission (SPCE) to improve fluorescence-based immunoassays. SPCE occurs when excited fluorophores near conducting metallic structures efficiently couple to surface plasmons. These surface plasmons, appearing as free electron oscillations in the metallic layer, produce elec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of SPIE--the International Society for Optical Engineering
دوره 6099 شماره
صفحات -
تاریخ انتشار 2006